Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122911, 2023 Nov 05.
Article in English | MEDLINE | ID: covidwho-2327829

ABSTRACT

Millions of individuals have lost their lives and changed their routines as a direct consequence of exposure to the coronavirus (Covid-19). Molnupiravir (MOL) is an orally bioavailable tiny molecule antiviral prodrug that is effective for curing the coronavirus that produces serious acute respiratory disorder (SARS-CoV-2). Fully green-assessed stability-indicating simple spectrophotometric methods have been developed and fully validated as per ICH criteria. The potential impact of degradation products of drug components on the safety and efficacy of a medication's shelf life is likely to be negligible. The field of pharmaceutical analysis necessitates various stability testing under different conditions. The conduct of such inquiries affords the prospect of predicting the most probable routes of degradation and ascertaining the inherent stability characteristics of the active drugs. Consequently, a surge in demand arose for the creation of an analytical methodology that could consistently measure the degradation products and/or impurities that may be present in pharmaceuticals. Herein, five smart and simple spectrophotometric data manipulation techniques have been produced for the concurrent estimation of MOL and its active metabolite as its possible acid degradation product namely; N-hydroxycytidine (NHC). Structure confirmation of NHC build-up through IR, MS and NMR analyses. All current techniques verified linearity ranging from 10 to 150 µg/ml and 10-60 µg/ml for MOL and NHC, respectively. The limit of quantitation (LOQ) values were in the range of 4.21-9.59 µg/ml, while the limit of detection (LOD) values were ranging from 1.38 - 3.16 µg/ml. The current methods were evaluated in terms of greenness by four assessing methods and confirmed to be green. The significant novelty of these methods depends on their being the first environmentally soundness stability-indicating spectrophotometric approaches for the concurrent estimation of MOL and its active metabolite, NHC. Also, the preparation of purified NHC delivers significant cost savings, instead of purchasing an expensive ingredient. These smart methods were utilized for analyzing the pharmaceutical dosage form which may be of great benefit to the pharmaceutical market.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Spectrophotometry/methods , Pharmaceutical Preparations
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121911, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2238262

ABSTRACT

Molnupiravir is an oral antiviral drug developed to provide significant benefit in reducing hospitalizations or deaths in mild COVID-19. Integrated green computational spectrophotometric method was developed for the determination of molnupiravir. Theoretical calculations were performed to predict the best coupling agent for efficient diazo coupling of molnupiravir. The binding energy between molnupiravir and various phenolic coupling agents, α-naphthol, ß-naphthol, 8-hydroxyquinoline, resorcinol, and phloroglucinol, was measured using Gaussian 03 software based on the density functional theory method and the basis set B3LYP/6-31G(d). The results showed that the interaction between molnupiravir and 8-hydroxyquinoline was higher than that of other phenolic coupling agents. The method described was based on the formation of a red colored chromogen by the diazo coupling of molnupiravir with sodium nitrite in acidic medium to form a diazonium ion coupled with 8-hydroxyquinoline. The absorption spectra showed maximum sharp peaks at 515 nm. The reaction conditions were optimized. Beer's law was followed over the concentration range of 1-12 µg/ml molnupiravir. Job's continuous variation method was developed and the stoichiometric ratio of molnupiravir to 8-hydroxyquinoline was determined to be 1:1. The described method was successfully applied to the determination of molnupiravir in pure form and in pharmaceutical dosage form. The results showed that the proposed method has minimal environmental impact compared to previous HPLC method.


Subject(s)
COVID-19 , Humans , Spectrophotometry/methods , Oxyquinoline , Pharmaceutical Preparations
3.
J AOAC Int ; 105(5): 1268-1279, 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-1973188

ABSTRACT

BACKGROUND: Common cold and cough preparations represent a huge segment of the global pharmaceutical market. Recently, cold/cough formulations containing paracetamol (PAR) have attracted significant attention as PAR has been implemented into the supportive treatment of mild cases of COVID-19 as the first-line antipyretic. From a literature review, no method has been reported yet for simultaneous estimation of PAR, pseudoephedrine hydrochloride (PSE) and carbinoxamine maleate (CRX) in any matrix. Thus, there is an urgent need for smart and green methods that would enable quantification of the cited components in their challenging ratio. OBJECTIVES: The aim of this work is to develop and validate the first UV spectrophotometric methods for simultaneous determination of the selected drugs taking into consideration the list of challenges including the highly overlapping features and spectral interferences in the cited mixture. METHODS: Namely, the proposed methods are: direct spectrophotometry, dual wavelength, first derivative, derivative ratio, ratio difference, constant center coupled with spectrum subtraction, and the constant multiplication method paired with spectrum subtraction. RESULTS: These methods were linear over the concentration range of 2.5-35, 1.5-20, and 4.5-35 µg/mL for PAR, PSE and CRX, respectively. These methods fulfill the validity parameters according to International Conference on Harmonization (ICH) guidelines. The results obtained were statistically benchmarked to the official ones where no significant difference was noticed. CONCLUSION: The developed methods are successfully applied for concurrent quantification of the studied components in the marketed dosage form without interference from matrix excipients. The impact on the environment was assessed by five green metrics, namely a recent Analytical greenness (AGREE) metric algorithm based on the green analytical chemistry framework, Green Analytical Procedure Index (GAPI), Eco-Scale, Assessment of Green Profile (AGP), and National Environmental Methods Index (NEMI). HIGHLIGHTS: Eco-friendly and successive spectrophotometric methods were firstly developed in this work, for the simultaneous quantification of PAR, PSE and CRX. These approaches incorporate a simple enrichment-aided technique to augment their spectrophotometric signals, facilitating the accurate quantitation of the minor component in the cited mixture.


Subject(s)
COVID-19 , Common Cold , Acetaminophen , Cough , Humans , Pseudoephedrine , Spectrophotometry/methods
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121585, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-1914978

ABSTRACT

Nasal drug combination is a very useful therapy for elevating the symptoms of various respiratory diseases as seasonal allergic rhinitis and infectious respiratory illness as pandemic COVID-19. One of best combination is Fluticasone propionate (FLU) and Azelastine (AZE). In this study, different UV spectrophotometric and chemometric methods have been applied for quantitative analysis of FLU and AZE without previous separation in their pure form, laboratory prepared mixture and pharmaceutical dosage form. Absorbance subtraction (AS) and Amplitude modulation (AM) spectrophotometric methods have been applied for the simultaneous determination of the cited drugs. Besides, three well-known chemometric techniques; namely, classical least squares (CLS), partial least square (PLS), and principal component regression (PCR) have been applied for the simultaneous analysis of both drugs by using spectrophotometric data. To be friendly to the environment, the greenness of the proposed methods was taken into consideration and evaluation of the analytical methods' greenness was done using two green analytical chemistry metrics known as, Analytical Greenness Calculator and an eco-scale scoring method. They indicated that the methods were environmentally friendly in relation to numerous approaches like instrument, reagents, and safety of waste. Analyzing laboratory prepared mixtures including different quantities of FLU and AZE, as well as their marketed dose form, was used to assess the selectivity of the applied methods. The validity of the developed methods was investigated by applying the standard addition technique. The resulting data were statistically compared to those obtained by the official or reported HPLC methods for FLU and AZE, which revealed no significant difference in accuracy and precision at p = 0.05.


Subject(s)
COVID-19 Drug Treatment , Research Design , Chemometrics , Drug Combinations , Humans , Spectrophotometry/methods
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121523, 2022 Nov 05.
Article in English | MEDLINE | ID: covidwho-1895420

ABSTRACT

Recent studies have reported that using certain antihypertensive therapies such as angiotensin II receptor blockers (ARBs) and calcium channel blocker (CCBs) is associated with reduction of fatal outcomes and improving clinical characteristics of patients suffering from hypertension during coronavirus pandemic. Thus, in the current work an effective, innovative and eco-friendly spectrophotometric manner namely, parent spectrum extraction (PSE)was established for evaluation of recommended triple antihypertensive combination therapies incorporate valsartan (VAL) as ARBs, amlodipine besylate as CCBs (AML) and hydrochlorothiazide (HCT)as diuretic into single-pill in challengeable ratio. PSE manner composed of two complementary steps, auxiliary resolution coupled with data analysis resolution(DAR)and it is characterized by resolving the spectral bands of the drugs and extraction of their discrete parent spectra (D0); accordingly, enabling determination of each analyte at its λmax. Auxiliary resolution of AML in triple mixture was applied to decrease complexity of overlapped spectra via constant multiplication (CM) followed by spectrum subtraction (SS) to obtain resolved mixture of VAL and HCT while data analysis resolution (DAR) of this binary mixture was applied via one of three novel methods namely, absorbance extraction (AE), peak-amplitude extraction (PE) and ratio extraction (RE) along with SS method. The proposed methods had analyzed VAL, AML and HCT in the range of 4.0-44.0 µg/mL, 4.0-40.0 µg/mL and 2.0-24.0 µg/mL, respectively with an excellent correlation coefficient (r ≥ 0.9999). Further, the proposed methods in PSR manner were validated as stated by ICH guidelines and it was found that accuracy and precision results are within the acceptable limit. The suggested procedures were effectively utilized for the concurrent quantification of VAL, AML and HCT in synthetic mixtures and tablets. The greenness of the proposed spectrophotometric methods was evaluated by National Environmental Methods Index (NEMI), the Analytical Eco-Scale, the Green Analytical Procedure Index (GAPI) and Analytical greenness metric (AGREE) where the four tools affirmed the eco-friendly nature of the proposed methods. A comparison between the outcomes of the studied methods with the official and reported ones was performed and no statistical difference was arisen between the methods regarding to accuracy and precision.The achieved results along with the simplicity, affordability and low-cost of the proposed methods recommended their appropriateness for the regular quality control examination and analysis of pure materials and pharmaceutical formulations as well as their applicability for the spectralprint recognition of the studied drugs.


Subject(s)
Coronavirus , Hypertension , Leukemia, Myeloid, Acute , Amlodipine/analysis , Amlodipine/therapeutic use , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antihypertensive Agents/analysis , Antihypertensive Agents/therapeutic use , Humans , Hydrochlorothiazide/analysis , Hydrochlorothiazide/therapeutic use , Hypertension/diagnosis , Hypertension/drug therapy , Leukemia, Myeloid, Acute/chemically induced , Pandemics , Spectrophotometry/methods , Valsartan
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 277: 121256, 2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-1796142

ABSTRACT

This study presents a comprehensive comparative study of different green spectrophotometric approaches without any physical separation on processing a ternary mixture of Aceclofenac (ACE), Paracetamol (PAR) and Rabeprazole (RAB) in combined medicine for managing tough symptoms in the COVID-19 Pandemic. The different univariate complementary resolutions according to the response used for the assay of the cited drugs after applying the processing steps were implemented using successive in-silico sample enrichment for resolving the ternary mixture via different windows of spectrophotometric platform using sticking - pulling strategy (SPS). Window I; based on manipulation of the data of zero order absorption spectrum of the mixture using novel Extended absorbance difference (EAD) and Absorbance difference (AD) methods coupled with corresponding spectrum subtraction method (SS). Window III; based on manipulation of the data of ratio spectra via Constant value coupled with constant subtraction (CV-CS) and novel Induced dual amplitude difference (IDAD) method coupled with corresponding spectrum subtraction method (SS). Finally, window IV; based on manipulation of the data of derivative of the ratio spectrum of the mixture via novel Factorized derivative ratio null contribution (FDD-NC) and Factorized unlimited derivative ratio (FUDD) methods coupled with corresponding spectrum subtraction method (SS). Synthetic mixtures and commercial medicine were constructively analyzed using the proposed methods while maintaining calibration graphs to be linear over ranges; 4.0-40.0 µg/mL for ACE, 2.0-14.0 µg/mL for PAR and 4.0-30.0 µg/mL for RAB. Moreover, methods' validation was confirmed via performing exhaustive statistical treatment of the experimental findings. The proposed methodologies can be used for the routine analysis of the cited drugs in quality control laboratories. Additionally, Spectral Similarity Index (SSI) was calculated to detect counterfeit products and methods' greenness profile was finally guaranteed through analytical greenness (AGREE) metric assessment tool.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Acetaminophen , COVID-19/epidemiology , Calibration , Humans , Pandemics , Spectrophotometry/methods
7.
PLoS One ; 15(11): e0241843, 2020.
Article in English | MEDLINE | ID: covidwho-945347

ABSTRACT

BACKGROUND: The measurement of body temperature has become commonplace in the current COVID-19 pandemic. Body temperature can be measured using thermal infrared imaging, a safe, non-contact method that relies on the emissivity of the skin being known to provide accurate readings. Skin pigmentation affects the absorption of visible light and enables us to see variations in skin colour. Pigmentation may also affect the absorption of infrared radiation and thus affect thermal imaging. Human skin has an accepted emissivity of 0.98 but the effect of different skin pigmentation on this value is not known. In this study, we investigated the influence of different skin pigmentation on thermal emissivity in 65 adult volunteers. METHODS: A reference object of known emissivity (electrical tape) was applied to participant's skin on the inner upper arm. Tape and arm were imaged simultaneously using a thermal infrared camera. The emissivity was set on the camera to the known value for electrical tape. The emissivity was altered manually until the skin temperature using thermal imaging software was equal to the initial tape temperature. This provided the calculated emissivity value of the skin. Participants were grouped according to skin pigmentation, quantified using the Fitzpatrick skin phototyping scale and reflectance spectrophotometry. Differences in emissivity values between skin pigmentation groups were assessed by one-way ANOVA. RESULTS: The mean calculated emissivity for the 65 participants was 0.972 (range 0.96-0.99). No significant differences in emissivity were observed between participants when grouped by skin pigmentation according to the Fitzpatrick scale (p = 0.859) or reflectance spectrophotometry (p = 0.346). CONCLUSION: These data suggest that skin pigmentation does not affect thermal emissivity measurement of skin temperature using thermal infrared imaging. This study will aid further research into the application of thermal infrared imaging as a screening or bedside diagnostic tool in clinical practice.


Subject(s)
Infrared Rays , Skin Pigmentation , Skin Temperature , Thermography/methods , Adult , Aged , COVID-19/diagnosis , COVID-19/virology , Ethnicity , Female , Healthy Volunteers , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Spectrophotometry/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL